Nanodiamond-based nanostructures for coupling nitrogen-vacancy centres to metal nanoparticles and semiconductor quantum dots

نویسندگان

  • Jianxiao Gong
  • Nat Steinsultz
  • Min Ouyang
چکیده

The ability to control the interaction between nitrogen-vacancy centres in diamond and photonic and/or broadband plasmonic nanostructures is crucial for the development of solid-state quantum devices with optimum performance. However, existing methods typically employ top-down fabrication, which restrict scalable and feasible manipulation of nitrogen-vacancy centres. Here, we develop a general bottom-up approach to fabricate an emerging class of freestanding nanodiamond-based hybrid nanostructures with external functional units of either plasmonic nanoparticles or excitonic quantum dots. Precise control of the structural parameters (including size, composition, coverage and spacing of the external functional units) is achieved, representing a pre-requisite for exploring the underlying physics. Fine tuning of the emission characteristics through structural regulation is demonstrated by performing single-particle optical studies. This study opens a rich toolbox to tailor properties of quantum emitters, which can facilitate design guidelines for devices based on nitrogen-vacancy centres that use these freestanding hybrid nanostructures as building blocks.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Plasmonic Effect on Exciton and Multiexciton Emission of Single Quantum Dots.

Quantum dots are nanoscale quantum emitters with high quantum yield and size-dependent emission wavelength, holding promises in many optical and electronic applications. When quantum dots are situated close to noble metal nanoparticles, their emitting behavior can be conveniently tuned because of the interaction between the excitons of the quantum dots and the plasmons of the metal nanoparticle...

متن کامل

Single defect centers in diamond nanocrystals as quantum probes for plasmonic nanostructures.

We present two applications of a single nitrogen vacancy center in a nanodiamond as quantum probe for plasmonic nanostructures. Coupling to the nanostructures is achieved in a highly controlled manner by picking up a pre-characterized nanocrystal with an atomic force microscope and placing it at the desired position. Local launching of single excitations into a nanowire with a spatial control o...

متن کامل

An aptasensor based on electrosynthesized conducting polymers, Cu2O–carbon dots and biosynthesized gold nanoparticles, for monitoring carcinoembryonic antigen

Current work proposes an inimitable composite, with great electrical conductivity and quite enhanced surface area, (including conducting polymers (poly (cathechol)), Cu2O–carbon dots and green synthesized gold nanoparticles) for detecting acute carcinoembryonic antigen. At current work, the electropolymerization was offered instead of enzyme-catalyzed polymerization of poly (catechol). <b...

متن کامل

A diamond nanowire single-photon source.

The development of a robust light source that emits one photon at a time will allow new technologies such as secure communication through quantum cryptography. Devices based on fluorescent dye molecules, quantum dots and carbon nanotubes have been demonstrated, but none has combined a high single-photon flux with stable, room-temperature operation. Luminescent centres in diamond have recently e...

متن کامل

Localized surface plasmon resonances arising from free carriers in doped quantum dots.

Localized surface plasmon resonances (LSPRs) typically arise in nanostructures of noble metals resulting in enhanced and geometrically tunable absorption and scattering resonances. LSPRs, however, are not limited to nanostructures of metals and can also be achieved in semiconductor nanocrystals with appreciable free carrier concentrations. Here, we describe well-defined LSPRs arising from p-typ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2016